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Abstract. Generalized xy lattice spin models consist of three-component unit vectors, associated with a
D-dimensional lattice (say Z

D), parameterized by usual spherical angles (θk, φk), and interacting via a
ferromagnetic potential restricted to nearest neighbours, of the form Wjk = −ε(sin θj sin θk)p cos(φj −
φk), p ∈ N, p ≥ 1; here ε is a positive quantity setting energy and temperature scales. The models were
recently introduced, and proven to support an ordering transition taking place at finite temperature when
D = 3; in turn, this transition had been investigated by different techniques for p = 2, 3, 4, and found to
belong to the same universality class as the xy model (i.e. p = 1). More recently, it was rigorously proven
that for sufficiently large p the transition becomes first order. Here we present a detailed analysis of the
transitional properties of this class of models for selected values of p. For p = 8 simulation results showed a
second order phase transition belonging to the xy class of universality; they suggested tricritical behaviour
for p = 12, and gave evidence of first-order transitions for both p = 16 and p = 20.

PACS. 05.50.+q Lattice theory and statistics (Ising, Potts, etc.) – 75.10.-b General theory and models of
magnetic ordering – 75.10.Hk Classical spin models

1 Introduction and potential models

The critical behaviour of statistical mechanical lattice spin
models depends upon a few features such as lattice di-
mensionality, number of spin components, functional form
(especially range and symmetry) of the interaction poten-
tials; over the years, such models have been deeply and
extensively studied for their own sake, as well as used to
describe, in a way both comparatively simple and rea-
sonably adequate, a variety of physical situations such as
solid solutions, magnetically ordered systems, nematic and
sometimes cholesteric liquid crystals, adsorption phenom-
ena. The simplification resulting from the neglect of trans-
lational degrees of freedom had made it possible to obtain
rigorous mathematical results [1,2] entailing existence or
absence and sometimes type of a phase transition, and, on
the other hand, to study it by a whole range of techniques,
such as Mean Field and Cluster Mean Field treatments,
high-temperature series expansion of the partition func-
tion, Renormalization Group and computer simulations.
For a review on the critical behaviour of the simplest of
these models see reference [3] and references therein.

Other, more elaborate potential models involve (in
some combination or other) isotropic or anisotropic
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linear couplings between spin components, sometimes
higher powers of scalar products among the inter-
acting spins, multipolar (usually dipolar) interactions,
Dzyaloshinski-Moriya terms, single-site anisotropy fields;
in some specific favourable cases one has even been able to
match the model and its potential parameters with the ex-
perimental system [4]. The nature of the magnetic order-
ing transition observed experimentally in the absence of
an external field can be of both second (more frequently)
or first order. This might, for example, result from doping
by nonmagnetic impurities, anisotropy of interactions in
spin space, or coupling to the lattice (for extensive reviews
see [5,6]).

This paper addresses some recently introduced lattice
spin models, defined by [7]:

Wjk = −ε(sin θj sin θk)p cos(φj − φk), p ∈ N, p ≥ 1. (1)

where ε is a positive quantity setting energy and temper-
ature scales (i.e. T = kBt/ε, where t denotes the absolute
temperature). Here we consider three-component spins
(unit vectors) parameterized by usual spherical angles
(θk, φk), and coupled by a ferromagnetic interaction po-
tential restricted to nearest neighbours; notice that the
case p = 1 corresponds to the usual xy model. On
the other hand, the planar rotator (PR) model involves
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two-component spins, parameterized by polar angles ϕj ,
and the interaction reads

Ujk = −ε cos(ϕj − ϕk); (2)

this interaction potential can also be recovered as a limit-
ing case of equation (1), by setting p = 0. In this case the
θ-dependence only survives in the free-spin measure.

The xy model can be regarded as an extreme case of
a general anisotropic Heisenberg model. Actually, the ter-
minological convention adopted here as well as by other
Authors is not always followed, and the name “xy model”
is sometimes used in the Literature to indicate planar
rotators; on the other hand, both models are known to
produce the same universality class. The two named mod-
els have a rich variety of applications in condensed mat-
ter physics [8]; they describe magnetic films with planar
anisotropy, but also thin-film superfluids or superconduc-
tors, or two-dimensional solids. In Statistical Physics, they
were also extensively studied for fundamental reasons, as
describing, for example, classical Coulomb gas or fluctuat-
ing surfaces and the roughness transition; although no ex-
act solution exists for them, many of their essential prop-
erties are known from different approaches [9].

As for the rôle of p in equation (1), notice also that
it could be taken to be a real positive number, say rang-
ing between 0 and 1 (and hence continuously interpolating
between PR and xy models); on the other hand, larger val-
ues of p reinforce the out-of-plane fluctuations; this makes
it possible to widely vary the anchoring of spins with re-
spect to the horizontal plane which might have direct ex-
perimental relevance; as for the model, this change of an-
choring is ultimately reflected by the significant changes
in transition behaviour, as explained below.

As discussed in reference [7], on the basis of the
known behaviour of the planar rotator model [1,2,10] and
of available rigorous inequalities (i.e. Ginibre’s inequali-
ties [11–14], and Wells’ inequality together with its gener-
alizations to continuous spins [15–18]), one can conclude
that, when D = 2 and for all values of p, the named
potential models produce orientational disorder at all fi-
nite temperatures, and support a Berezinskǐı-Kosterlitz-
Thouless(-like) (BKT) transition [15–17]; this result was
already known for the xy model (see, e.g., Ref. [10]). On
the other hand, when D = 3, these models support or-
dering transitions taking place at finite temperatures; in
both cases, the transition temperatures are bounded from
above by the corresponding values for the planar rotator
counterpart. Notice, however, that the mathematical re-
sults in reference [7] did not fully specify the nature of the
transition.

For D = 3 a Mean Field (MF) approach as well as
its Two-Site Cluster (TSC) refinement have been used
in reference [7] to estimate transition temperatures for
p = 2, 3, 4. Notice also that (sin θ)p, and hence the ab-
solute value of the interaction potential, decrease with in-
creasing p, and this aspect is reflected by the p-dependence
of the estimated transition temperature. Models defined
by D = 3 and p = 2, 3, 4 have been studied via exten-
sive Monte Carlo (MC) simulations in reference [19]. The

phase transition was found to be of the second order, and
the model to belong to the xy universality class. Further-
more, it has been found that the p-dependence of critical
temperature follows a power-law decay, at least for the
values used there.

The Authors of reference [20] had estimated transi-
tion temperatures by other techniques as well, i.e. by
self-consistent harmonic approximation (SCHA), both for
D = 2 and D = 3, and found that the transition tempera-
ture is decreasing against p. In this case however we do not
have the power-law decay found for the above mentioned
methods [19]. Moreover, a study of the models in their con-
tinuum limits, carried out by the same Authors [20], also
showed that out-of-plane fluctuations, and consequently
the magnon density, decrease with increasing p. Models
defined by D = 2 and p = 2, 3, 4, 5 have been studied by
MC simulations in reference [21], and found to produce a
BKT-(like) transition, possibly changing to a first-order
transition for larger p, due to the large number of vortices
and strong out-of-plane fluctuations.

More or less simultaneously with the above study,
a somewhat similar situation, involving interactions
isotropic in spin space and suitable polynomials in the
scalar product, had been investigated in references [22,23],
where the possible existence of first-order transitions had
been proven rigorously, thus justifying previous conjec-
tures based on simulation evidence. More precisely, the
named models have the form (possibly within numerical
factors)

Vjk = −ε(2−p) (1 + τ)p, (3)

where τ = τjk denotes the scalar product between the two
interacting 2- or 3-component spins; it was proven [22,23]
that a first-order transition takes place for D = 2, 3 and
sufficiently large p, and that this behaviour is indepen-
dent of the nature of the low-temperature phase. Simu-
lation evidence of this behaviour had first been produced
some twenty years ago for D = 2 and the 2-component
case [24,25], and various objections were raised against
this interpretation (e.g. Ref. [26]); Evidence of a first-order
transition for D = 2 and 3-component spins was reported
a few years ago [27]; see also references [22,23] for a more
detailed bibliography.

Even more recently [28] the two lines of research were
so to speak joined: it was proven that, also for the gener-
alized xy model (Eq. (1)), the transition turns first order
for large p, both in D = 2 and D = 3. One has a BKT
low-temperature phase in the two-dimensional case, and
ferromagnetic order in the three-dimensional one.

A simple but telling physical interpretation of the
above mathematical theorems can be obtained by con-
sidering the density of states for the pair potentials in
equations (1) and (3), and especially the fractions corre-
sponding to their minimum and shallow regions, respec-
tively. Numerical estimates of the density of states were
worked out by calculating the pair potential over a rather
fine grid of points, uniformly spaced with respect to cos θ
and (φj − φk), and collecting the results into a potential
energy hystogram; more precisely, the minimum region
(and hence the minimum fraction ρmin) were defined by
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Table 1. Estimates of ρmin and ρsha for different values of p
and for the families of models defined by equations (1) and (3).

Models (1) Models (3)

p ρmin ρsha ρmin ρsha

4 0.0170 0.2174 0.0694 0.3136

8 0.0087 0.4606 0.0353 0.5596

12 0.0059 0.5955 0.0237 0.6790

16 0.0044 0.6776 0.0178 0.7480

20 0.0035 0.7323 0.0143 0.7927

the pair potential being smaller than −(3ε/4), whereas
the shallow region (and hence ρsha) were defined by the
potential being smaller than 0.01ε in magnitude. For both
families of models this procedure (Tab. 1) showed that,
upon increasing p, the minimum fraction kept decreasing,
and the shallow one kept increasing. As for the isotropic
models, such a result could be anticipated from the plots
of Vjk versus τ , but no such simple visualization is possible
for the anisotropic ones.

The above mathematical theorems do not yield sharp
estimates for the threshold value of p where the first order
transition sets in, and this kind of result has to be de-
termined by numerical approaches. Thus the goal of this
letter is to characterize their ordering transitions by means
of MF and TSC treatments, as well as MC simulation, for
different values of the exponent p = 8, 12, 16, and p = 20.
Furthermore the critical behaviour of the models is to be
discussed.

2 Computational aspects

MF and TSC calculations were carried out as discussed
in reference [7], for 5 ≤ p ≤ 12, and then p = 16, 20. In
both cases we found that, upon increasing p, the tran-
sition changes from second to first order; the two treat-
ments exhibited different thresholds, i.e. between 5 and 6
for MF, between 10 and 11 for TSC; as remarked above,
the exponent p > 0 can, but need not, be restricted to an
integer number; thus we treated p as real positive number,
and determined the tricritical points where the transition
changes its order (see Ref. [29] for a detailed review on
the properties of tricritical points); this analysis yielded
p = 5.1229, Ttri = 1.0966 for MF, and p = 10.8602,
Ttri = 0.8695 for TSC, respectively. An investigation of
the properties of the Landau expansion for the two ex-
pressions of the thermodynamic potential relevant to MF
and TSC (see Ref. [7]) showed that the tricritical points
are stable.

Extensive simulations were carried out for p =
8, 12, 16, 20, on periodically repeated cubic samples, con-
sisting of N = L3 sites, where L = 10, 16, 20, 24, 30 for
p = 8, 12, and L = 10, 20, 30 for p = 16, 20; some addi-
tional simulations were carried out for p = 12, L = 36, 40
and p = 16, L = 36. Equilibration runs took between

Fig. 1. Simulation results for the mean energy per spin U and
the in-plane magnetization M obtained with different sample
sizes for p = 12. Here and in following figures, the statistical
errors are smaller than symbol sizes.

25 000 and 250 000 cycles, and production runs took be-
tween 250 000 and 1 000 000; macrostep averages for eval-
uating statistical errors were taken over 1000 cycles. Sim-
ulations were mostly run in cascade, in order of increasing
temperature; for p = 12, 16, 20 and L = 30, additional
runs were carried out in order of decreasing temperature,
so as to look for evidence of hysteresis. Calculated ob-
servables (potential energy U , specific heat CV , in-plane
magnetic order parameter M and associated susceptibili-
ties χ1 and χ2), as well as simulation methodology, closely
followed the lines of our previous paper [19].

3 Simulation results

Simulation results for p = 8 (not shown) yielded evi-
dence of a second-order transition with significant growth
of orientational fluctuations, similarly to the simulation
results reported in reference [19] for p = 2, 3, 4; sim-
ulation results were analysed by finite-size scaling the-
ory [19,30] generally considered more reliable than the
extraction of exponents by fits to the data obtained for
a fixed lattice size, and yielded the transition tempera-
ture Tc = 0.920 ± 0.001, and critical exponents in the xy
universality class (ν = 0.67, β = 0.35, γ = 1.32, within
statistical errors ranging between 0.01 and 0.02) [3].

Simulation results for p = 12 are plotted in Figure 1;
upon increasing L, both CV and χ1 showed sharpening
peaks at T ≈ 0.834: changes of both U and M around
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Fig. 2. Specific heat maxima versus system size on logarithmic
scales. The curves serve to only guide the eye. The cases p = 4
and p = 8 correspond to a second order phase transition, while
the slope of the curve p = 12 suggests a tricritical behaviour.

this temperature became steeper and steeper, although
without any hint of a discontinuity. The data obtained
via MC simulation were first analysed by the usual finite
size-scaling theory relevant to second order phase tran-
sitions, and a violation of the this theory showed up for
this value of p. Thus, as mentioned above, some additional
simulations were started just above the transition and car-
ried out in cooling order, and their results were found to
coincide with their counterparts produced in heating or-
der, to within associated statistical errors. Thus no sign
of hysteresis was found indicating the absence of a strong
first-order transition as well.

In order to determine the order of the phase transition
for this value of the exponent p, we analysed the out-
come of the simulations using finite-size scaling theory for
a few values of p. More precisely, we investigated the be-
haviour of the specific heat maxima as a function of L (see
Fig. 2). Recall that the specific heat maxima should obey
the finite-size scaling relation

Cmax
V (p, L) ∼ L2y−3, (4)

with y = 1/ν for a second-order phase transition [30], and
y = 3 for a first-order one [31]. The results for p = 4
and p = 8 were found to be consistent with y = 1/ν
(ν = 0.67 is the critical exponent of the xy universality
class), whereas for p = 12 we found that y ranges between
1.95 ± 0.03 (when data for all sample sizes are included)
and y = 2.00 ± 0.05 (when the smallest sample sizes cor-
responding to L = 10 and L = 12 are excluded). Next we
have tried to check the scaling behaviour by using scaling
forms relevant to a tricritical point. In this case one has
CV ∼ L

√
ln L see reference [29] for details. We were not

able to capture the logarithmic dependence of the specific
heat on L, but conclude that the transition for this value
of the exponent p is most likely to be a tricritical point.
Our simulation estimate of the transition temperature Tc

for the named case is 0.834 ± 0.001; here the error bars

Fig. 3. Simulation results for the mean energy per spin U and
the in-plane magnetization M obtained with different sample
sizes for p = 20. Diamonds denote simulation results obtained
in heating order, whereas squares denote cooling order; vertical
dotted lines and arrows mark the jumps obtained in heating
(right-hand segment) and in cooling order (left-hand segment),
respectively.

are conservatively taken to be twice the temperature step
used in the transition range.

Simulation results obtained with p = 16 (not shown),
as well as with p = 20 (Fig. 3), exhibited for L = 30
recognizable jumps of U and M , taking place over a tem-
perature range of 0.0005; on the other hand, both CV and
the susceptibility χ1 (not reported here) showed a peak
about the same temperature.

Actually, additional simulations, carried out for p =
16, L = 36, showed abrupt jumps of both U∗ and M tak-
ing place over the same temperature range as for L = 30;
estimates of transitional properties carried out as dis-
cussed in references [32,33], also confirmed the results ob-
tained for L = 30. The case p = 16 showed no evidence of
hysteresis. Simulation results for p = 20 already exhibited
corresponding jumps in U and M for L = 20; moreover,
for p = 20, there was a recognizable sign of hysteresis.
Transitional properties for p = 16, 20 were estimated by
analyzing simulation results for the largest sample size
L = 30 and in heating order only, as discussed in refer-
ences [32,33], and are reported in Table 2.

On the other hand, we tried estimating the transition
temperatures for p = 16, 20 by means of the method, de-
veloped in reference [34]. There it is rigorously demon-
strated that for finite systems undergoing a first order
phase transition the transition temperature can be read
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Table 2. Summary of transitional properties obtained by dif-
ferent methods. MC estimates for p = 16, 20 were obtained
by analyzing results for the largest sample L = 30, in heating
order, as discussed in references [32,33].

Method p Tc ∆U M

MF 12 0.8366 1.3140 0.7687

TSC 12 0.8461 0.5437 0.5098

MC 12 0.834 ± 0.001

MF 16 0.7836 1.5355 0.7836

TSC 16 0.7906 1.0097 0.6721

MC 16 0.784 ± 0.001 0.62 ± 0.05 0.53 ± 0.02

MF 20 0.7486 1.6712 0.8387

TSC 20 0.7549 1.2578 0.7374

MC 20 0.752 ± 0.001 0.90 ± 0.04 0.62 ± 0.02

Fig. 4. p-dependence of the transition temperature Tc. The
values for p = 1, 2, 3 and 4 are taken from references [19,35].
Locations of tricritical points are indicated by arrows.

off from the intersection temperatures Ti of the magne-
tization, corresponding to sample sizes L and 2L, i.e.
M(Ti, L) = M(Ti, 2L). The estimated temperature should
differ from the bulk critical one only by exponentially
small corrections. In the present case we used the sam-
ple sizes L = 10 and L = 20, and results obtained in these
two ways were consistent among themselves.

In Figure 4 we present the behaviour of the transition
temperature as a function of p for 1 ≤ p ≤ 20. Data for
1 ≤ p ≤ 4 are taken from references [7,35]. Notice that,
for p ≤ 4, TSC gives better estimates of Tc than MF, then
the two roles are exchanged for p = 8, 12, and finally the
three methods give very similar answers when p ≥ 16, i.e.
where the transition has a pronounced first-order charac-
ter. Moreover, the p-dependence of Tc,MC now seems to
be no longer well fitted by an inverse-power law, and a
change a slope for larger p can be seen in all the three
curves.

To summarize, starting from and complementing some
recent mathematical results [28], we have considered po-
tential models defined by larger value of the exponent p in
equation (1), associated with a 3-dimensional lattice, and
studied them by MF, TSC and MC simulation. MF and
TSC yielded a tricritical behaviour with tricritical points
having real (non-integer) values of the parameter p. As
for simulation results, xy critical behaviour was found for
p = 8, the case p = 12 suggested tricritical behaviour,
whereas evidence of first-order transitions was obtained
for p = 16, 20.

The present calculations were carried out, on, among other ma-
chines, workstations belonging to the Sezione di Pavia of INFN
(Istituto Nazionale di Fisica Nucleare). Allocation of computer
time by the Computer Centre of Pavia University and CILEA
(Consorzio Interuniversitario Lombardo per l’ Elaborazione
Automatica, Segrate, Milan), as well as by CINECA (Centro
Interuniversitario Nord-Est di Calcolo Automatico, Casalec-
chio di Reno, Bologna), are gratefully acknowledged as well.
The present paper originated during HC’s stay at Pavia Uni-
versity, made possible by a NATO-CNR scholarship; financial
support as well as scientific hospitality are gratefully acknowl-
edged. He also acknowledges financial support from the Asso-
ciateship Schme of ICTP and grant No. 1517 of the Bulgarian
Fund for Scientific Research. The authors also thank Prof. V.A.
Zagrebnov (CPT-CNRS and Université de la Méditerranée,
Luminy, Marseille, France) and Prof. A.C.D. van Enter (Rijk-
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